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The three-dimensional problem of reflection of a shock wave of arbitrary frontshape 
from a fixed rigid wall is considered. Existence of a piecewise analytic solution 
of the problem defining the initial stage of regular reflection is proved. Expan- 
sion of solution behind the reflected wave front in converging power series in the 
neighborhood of the incident wave (of the moving along the wall intersection line 
of the incident wave front and the rigid wall) is obtained for prolonged instantsof 
time. It is shown that such expansions generally occur only then, when the length 
of the trace velocity vector relative to gas behind the reflected wave projectedon 
the plane normal to the trace exceeds the speed of sound. A bibliography of public- 
ations dealing with the problem of shock wave reflection can be found in /1,2/. 

1. Statement of the problem. The motion of an inviscid non-heat-conducting gas is 
considered in the region of 'p(x)>0 with surface rl :(p(x) = 0 (Vcp #O) assumed to be a rig ,id 
impervious wall at which the gas velocity vector u satisfies the relation 

uvq = 0, x = (x, Y, z) E r1 (1 .l) 

Let the piecewise-analytic solution of gasdynamics equations 
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$+vp=o, s+ pc*divu=O, -$=O, p=ql(p,sj (1.2) 

defining shock wave propagation toward a rigid wall when t<O, be known. Here p is the 
pressure, p is the density, s is the entropy, c is the speed of sound, and $((p, s)is an analy- 
tic function that specifies the equation of state of a normal gas /3,4/. This means that 
ahead and behind the shock wave front u(x, t), p(x, t), s(x, t) are analytic functions of their 
arguments, and the shock wave surface rZ is an analytic hypersurface in the four-dimensional 
space x, t. The Hugoniot relations 

[pVnl=O, [p + pvnT=O, [E + Pp-'+ '/*u,~l=O, [u,] -0 (1.3) 

and the condition of entropy increase are satisfied on r2. Here [f] denotes the jump of 
quantity f at transition through the discontinuity, v,, =D,- u,, u, and D, are the velocities 
of gas and of shock wave front, respectively, in the direction of the normal n to the front, 

u0 is the tangent velocity component, and E is the specific internal energy. The solution 
ahead of the front satisfies condition (1.4). At instant t= 0 the shock wave front reaches 
the wall touching it at point 0. Further motion of gas has to be defined. 

When t>O the solution structure changes, a shock wave reflected from the wall makesits 
appearance. The region of determination of the generalized gas motion in the space x, t con- 
sists of three subregions, viz., region Q1 bounded by r,, the incident wave surface r2 and 
the plane t = 0; region Q, bounded by l?*, the reflected wave surface J?3 and the plane 

t=o; and region 9, bounded by rl and r3 (Fig.1 illustrates the two-dimensional case). 
Solution in 9, and 51, is obtained idenpendently by solving the problem of an arbitrary dis- 
continuity on the curvilinear surface y10 (the intersection of rz and the plane t = U), and 
the incident wave surface rZ is determined for t >O /5/. In what follows the solution in 
% and Q,, and surface rZ are assumed known. We have to construct the solution of Eqs. 
(1.2) in a$ which satisfies conditions (1.1) and (1.3) on rl, r3, and at the same time deter- 
mine the reflected wave surface ra. 

2. Relationships at the shock wave. In the case of regular reflectionwhichobtains 
in the initial stage the unknown surface r3 must pass through the known two-dimensional sur- 
face y. , the locus of rl and rz intersection points (Fig.1). Let surface y,, be para- 
metrically defined: t = to(fi,y),x = xo(f3,y) with t, and x0 being analytic functions of para- 
meters p, y, and xoa # 0, xoy f 0, ~06 x soy # u. We introduce in region Q3 new coordinates 
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r, t(, p, y such that 't == U corresponds to the shock wave surface, and a YE 0 to the rigid wall. 
The respective substitution of variables conforms to t :y t (T, CL, p, 11) = T -7 a + t, (p, y), s = 
x (T, a, P, 19. Function y = x(O,cr, p,v) is determined by the solution of the Cauchy problem 

Ya=II, y jam=” = x0 (P, v) 

Function His selected so that equations t :~ R -i- t,,(fl, Y),X == ~(0, SL, [), y) parametrically 
define the shock wave surface 1‘3. 

Let the equation of IT3 be of the form c,,(s, I) m: 0. Then v, (S (0, CL, I:, y), t (0, a, I;, 11)) 7 0 
identically with respect to U, fi,y, Differentiation of this equality with respect to CL. I\, y 
yields the formulas 

(Wl)l -, %TCP, = 0, tp (OI)L + s,:TcP1= 0, t, ((PI)! i- KvV:‘pl = 0 

Since the shock wave front normal to II. and the quantity D, are linked with qI by the 
relations n r'P1 / Vy, /-I, D, :m -(rpJc / ‘V(pl 1-l , we have the following equalities: 

Y,;" = f,,D,‘. s.p = t,,n,,. (n(=l. s,n=D, 

of which the first three formulas enable us to determine n in the form 

n = ((I m I2 - D,2 1 k ]2)'/:1n $ II,, (k x: m)} 1 m je2 , m= zp :: sy, k = tBsv - I,up (2.1) 

where k is a vector tangent to the shock wave front by virtue of (2.1). 
Function H must, therefore, satisfy the relation Hn ED,,. where the normal n is defined by 

formula (2.1). Specific selection will be made in Sect.3. Writing the preceding formulas in 
the form 

(XI: - f,,u)n = tp (/I,, - l/J, (Xy - l,U) n = tv (D,, - u,), 1 ,I j = 1 

we obtain for n another formula 

II= {/ g 12 - u,,* 1 k I'j+q + l.,(k x qjll (I l-1 
q = (q - @I) x (S.> - l,,u) 

(2.2) 

which is valid when lq 1 ]~,,k 1 and the inequality 1 m I>, ID,k 1 is satisfied in (2.1). If func- 
tion x (O,a, fi, y) is known, X(T, c(, p, y)is determined similarly by solving the Cauchy problem 

X,==G, s /I -0 = x (0, a,B, v) 

Function Gis selected so that the contact characteristic /3/ that passes at T = 0 through 
the cross section CL = const of surface r3 is parametrically specified by formulas t=7+t(1 
to(p, y), x = x (5, a, fl, y) for fixed a. If the equation of that characteristic is of the form 
~(2, t) = 0, then as previously we obtain the equalities 

(Q)t + nv@= 0, (cpz)t f x,Vm,=O, Q((P?)f + %3V%=ol t, (cpzjt + XVV~PZ. =o 

and their corollaries 

(xe - tp) n? = 0, fxY - t,u) n2 = 0. (x, - u) n2 = 0, jn?l= i 

Hence n, = q 1 q 1-l and function G must satisfy the relation (G - u)q = 0. The specific 
selection of G is effected in 
Sect.3. Since kq = kn = 0, 
vector k at points y0 is direct- 
ed along the tangent to the line 
of intersection of the incident 
wave front and the wall, i.e. to 
the trace which the incident 

Y 31 front leaves on the wall at in- 
stant t = const. A three-dimen- 
sional picture of this at instant 
t -= const appears in Fig.2 (ysf, 
?3f,y0t are cross sections of rz? 
r3, To at t = const). 

For analyzing the relation- 

Fig.1 Fig.2 ships at the shock wave it is 
convenient to use the vector \v 

w = (q x k) 1 k 1-2 = u - (uk) 1 k I-2k - (k x m) 1 k 1-2 

which at points y0 represents the difference of projections of u on the plane normal to k and 
the trace motion velocity on the wall in a direction perpendicular to the trace. Since by 
virtue of (2.2) u&- wn = -u,, hence on r3 
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[pIL&l = 0, tp + pwn*l = 0, I& + pp-’ -I- ‘18 %*I = 0, Iw,l = 0 

From the corollaries of relations at discontinuity 

1 w 1% = I Wl 1% - @ - Pl)h + v), (w - WlY = (P - P,) x (VI - a 

where v = p-l, and the quantities ahead of the front are denoted by subscript 1 and those be- 
hind it have no subscripts. For the angle @of turn of w in the n plane orthogonal to k we 
have at transition through the discontinuity (cos 9=s(ww,)lwl-'X /TV, I-1) t,he relation 

sin~9=(p-~p,)(u~-u-vvf 1 wi I-” (P - PlD x ri wz Ia - (P - PS @I -i- w (2.3) 

n =g(p, PlYUl) 
where 0 is the p-polar. 

Function g defines the Hugoniot curve. In the 6, p plane curve (2.3) is determinatewhen 

(Vi - u)I wIIQI-* > P - Pl > 0. Alongthatcurve ISin @I< 1 and 8 vanishes when equality is reached 
in one of inequalities. Consequently 9 reaches its maximum value 6* (limit angle of turn) at 
some point P =IJr. 

In what follows, we assume that the equations of state of the gas are such that the right- 
hand side of (2.3) is monotonic when p< p* and p >p* and that there exists a p0 (pi < po< 
p*) such that along the curve Jw j2== Jw~\~ -(p -p,)(uI I_ v) < c? when p >p,, and 1 w 1“ )c?when 
p< pO. A polytropic gas satisfies these conditions. 

Using the identity 

siri* 6 = 1 q X q, 1’ ] q I+ 1 q, I-‘. q = {(qm) m f (um) (k x 41 I m I-' 

we obtain from (2.3) the relation 

h - h, 

((l+h'IkI')(1+h;~]kl'))"? = I (p - p,) (87, - v) - /Ii yup 1 q1 I-‘(p - pi)” 
\ 
‘I* 

itl,I’-(~-~~~)(~~+~~)lkI~ , (2.4) 

h = (um)(qm)-', h = (uw (q,m)-’ 

At point Q,where the shock wave front touches the wall, (ta = t, = 0, k = I)). and (2.4) be- 
comes the equation of the (p, &l-diagram of shock waves , which is determinate and monotonic 
for all values of p(p*+ 00 as lk I-0). In the region of determination (2.4) 

1 q I* - v,* 1 k I*= 1 k I’(1 w Jp - c,,2) = 1 k /?(I w1 I2 - (p - p,)(vl - L’)-~u~*) > 0 

From (1.3) with allowance for the equalities 

Ixgul= (xpn) [CM= W,, [fr,l, [s,ul =t,,D,, PJ,,~ 
we obtain two corollaries 

[a] = lb]= 0 (a =(ux,J - tfi(E f- pu : 11% Ju (2) (2.5) 
b=(UX,) - t, fE + PV + ':? 1 U I*)) 

When xp, sy, tp, t, at some point of surface r,,the parameters of gas ahead of the front, and the 
quantity Ib (h< II,) behind it are known, it is possible to determine all parameters of gas be- 
hind the front, vector n and D,,. 

In conformity with (2.1), at point Q where ip = L+‘Y 0,n 7: m lmf-1 we have ft= tb,,/m/-1. Equa- 
tion (2.4) uniquely determines p in terms of h, and subsequently all remaining parameters of 
gas /3,4/. At points r,, where in'+$,"+O, Eq.(2.4) has for a given h two solutions ~j-,~+(p_ 

<P* <P+) (an analog of "weak" and "strong" shocks in the theory of steady motion). Eut,when 
I$ + lYSJ, 0, only P_ approaches p which is uniquely defined at point Q(p+-+ x: as Ikj-tO). Hence 
on considerations of continuity of solution behind the front we uniquely selectthe "weak" shock. 
Using the Hugoniot adiabatic curve and the known value of p, we determine r, and using known 
p. o,pl,v, we obtain 1‘N. The following identities apply: 

(urn) = h j q 1 / m / (1 -;- hz 1 k I’)-I”, /q/i=/m/“+2kfbxR--ax,) - 2itrI”(F$po)--(lgb--2yn)” 

u = {(urn) m j- (ax, --lih~)~m+(~+p~C’/,~u~‘)(kxm)f]m~” 

by virtue of which it is possible to determine u in terms of the known quantities Ia, a, b, P, v, x8, 
Jy. '6' fY. Then, n is determined using formula (2.2), and Dn=~n+(un). At points v0 the normal 
to the rigid wall coincides with vector m~rnl-~, hence h= 0 on yO. It is, consequently, pos- 
sible to determine on y. all parameters of gas behind the front, the normal n, and &as analy- 
tic functions of variables @,a at those points IQ, where the regular reflection (p < P*) is 
possible. 
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3. Transformation of equations and boundary conditions. We introduce in region 

Q3 new coordinates, and the functions that define the passage to them are determined in con- 

formity with Sect.2 as the solution of the Cauchy problem 

ya = D, (I yp x yv I2 - I),,‘( T,,y,, - T,>y,, 1’)-“: (yfi :: y,J> T, = 1 (3.1) 

y Ia-0 = xo(B, v), T 1'1 0 = lo (Ps :,) 

x,= II (xg >: xy), tr= 1. s ITZ” = y Iii-“, t Lo = T 

where D, is a function of h, yg, y,, T,, I’,. and of quantities ahead of the front considered tobe 

functions of y, 2', as determined in Sect.2. For the transformation of equations of motionwe 

use the formulas 

v=h&+p~+I-~[(Ty-lyHa)X(Ii--Sa)~+(x~-xX1) x (xji-f,+L)-$} 

f=J &+ I In 1-2 {,,(X~. x ,n,+x, x m,+ 

h= I-’ (xp - t,,s,) x (4.) - t,%J. 
,u = - 1-1 (xp - f,,ST) x (s:, - tys,). 
f = (sr - sa) {(s,: - t,,xJ x (s:, - t,s,)l, J = (qm) I m 1-2 

The feasibility of passing to new variables depends on the quantity I not becoming zero 

or infinity. When r mm- 0 we have 

This formula defines the required property of I, at least on yO. 

The transformed equations (1.2) are schematically represented in the form 

(3.2) 

where V is the vector solution whose components s, (I, b,h,~_', Q, x,,, yn,yv, zo,zv and coefficients 

(I,. c;.H,D, E,,lIi are scalar, vector-valued, and matrix-valued analytic functionsofvariables 

v, s,, P, Y. e. Matrix .!) vanishes when + : 0. 

In conformity with Sect.2 boundary conditions are of the form 

r=o: s==j,(//,sg.s,.s,cr,~j,~). n=j?("fl,x,c&P,y) (3.3) 

b = fs(xv, s.cL. B. v). I'= f, (II. xp, sy> s,a,P, v); a=o: IL==0 

where j, are analytic functions of their arguments close to the values of the latter on yO. 

The dependence of ji on I.U, 13, I' is linked to the appearance in the relations at the shock 

wave front of parameters of gas ahead of the front, which are known as functions of x, i. The 

input problem is, thus, reduced to solving problem (3.1)- (3.3) followed by the inversion of 

representations that define transition to new variables. 

4. Construction of Solution in the class of formal power series. Theproblem 
formulated here is a generalization of the Goursat problem. The problem of derivation of its 

solution in the class of formal power series in variables T, CL. p- pl, s--Y~, where (0, 0, PI, VL) 
arethecoordinatesofanarbitrarypoint N of surface yO, reduces to the calculation of deriva- 

tives of the solution at that point. 

We write the last equation of system (3.2) in the form 

rc',=flKU, I F (Lb = H ~T_cL”. fi+,v=v,) 

whose two correlations 

(4.1) 

(4.2) 

&“U I n_j - U,,, - i 
k==j+l 

&?FL,, ,,-k = A$+, &I-” (u,,, - BNul," - F)L.,,,,-h = 0 

(fi,j = d(~+j)ji&&W) 
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are useful for calculating the derivatives. 

If &Ucl,, is specified for a = 0, and for z = 0 is AJJ,,,, then by multiplying (4.2) by 

A,,& * we respectively obtain a system of two equations in Uj,._,. In the considered here 
case A1 = (1, 0), A, = (-X, 1)(x = cYj,/ah I&. To clarify the question of the obtained system 
solvability, it is expedient to reduce matrix BNto the diagonal form. The eigenvalues of 
matrix BN are of the form 

z'l,%= {(II")&((JYI~12c-*- 1 A )c p 12)“J) (PC-2 - 1 h I~)-1 IN 

and real when lwN 1 >c,t~ (subscript xdenotes quantities at point iv). Below, the case of 
strict inequality is called supersonic, and that of strict reverse inequality, subsonic. 

In the neighborhood of point Q on j'O (i.e. for small f) we always have the supersonic 
case, while for large t transition to the subsonic case is possible (but not obligatory) de- 
pending on the geometry of incipient wave, its velocity, etc. Since all quantities on y0 are 
in conformity with Sect.2, determined prior to the solution of the problem, the "subsonic" and 
"supersonic" points, as well as the points at which the limit angle of turn of vector w, are 
a priori known. 

In the subsonic case Ye = Y2. For v,# Y? matrix B~reduces to the diagonal form 

BN = .U-‘@I, x = diag (Y*, ~,) 
It is convenient to introduce new unknown functions 

r= ‘I II II =-JlU = 
h+Kp 

_ h -+ lip /I 

Ic=-I(PIpI~P- 
* 

I li :: p Iz)‘!,p-’ (J 1 m 1); 

Equations (4.1) assume the form 

Solving the equations obtained by multiplying (4.2) by Al, AS9 we obtain the formulas 

rj* ,+j=AL' r&B1 ~:-j~:-'-"$~_l,n_~ + i \$'-jtr;-'~;"~~_~~n_~ + (4.4) 
Ir=1 

& VaYy’-j-’ $:-I, n-b + dv? (h,,, - lo,,) + v2$ (ln,O - dr,J} 

A,, = vz”vl-” - d, d = (xK - l)(zK + I)-’ 

These formulas are used for calculating the derivatives of order n with respect to vari- 
ables z,a of functions r, 1 in terms of derivatives of order n - 1 of qi and derivatives 

(rgsn - LJa=o, (Ll - dr,,,,,),~ are known by virtue of (3.3) . The necessary condition of solvabil- 
ity of equations for rj,,,_i, lj,n-l are of the form A,,#O,n = 1, 2,.. . . If A, vanishes, we ob- 
tain a contradiction to the assumption of existence an analytic solution of the problem with 
arbitrary data. 

In the supersonic case Ye )vl >O, 1 d 1 <I and the conditions of solvability are always 
satisfied. In the subsonic case Yg = v,, and h' is an imaginary number. If -1 =_ @W, 

d-e?*'b (O<o<l,Ox<6<;, 
V2VI 

the solvability condition is of the form @"lT -- @X16 # 0 for 
all positive integers n. The quantities llr vanish on straight lines (J = 6rz-' j- j??-'(j = 0, 1,. 
. .1 n - 1) that lie in the unit square of the plane (~~6). Points of these straight lines for 
various n, j form everywhere in that square a compact set. Then in any neighborhoodofpoint 
(0, 6) with A%#0 (n = 1, 2,.. .) there are points at which certain _jB = 0. This property can 
be interpreted as instability of the subsonic problem in the class of analytic functions. 
Since on vo,a and 6 are continuous functions of fi and p, it is possible to maintain that 
when a~const,6~constthere are points on y,, at which Ah.=O. Consequently the problem of 
regular reflection has, generally, no analytic solution in the subsonic case. 

Below, we consider the supersonic case. Jt is convenient to transform the boundary con- 
ditionsthat link r and 1 to the form 

(r - &=,, = 0, (I - dr),+ = gl (r, sb, sy, x, CL, p, 19) (4.5) 

where g, is an analytic function of its arguments, such that (r/g,idr)N = 0. 
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Lemma. A unique solution of problem(3.1)- (3.3) exists in the class of formal power 
seriesinvariabfes 7, a, fi - i))l, ?' - P1. 

Proof is by induction over the total number n of differentiation With respect to t and a. 
In accordance with Sect.2 all sought functions are known on ye when r-= a= 0. Differentiating 
them with respect to 6 and ?', we obtain all derivatives with respect to these variables. If 
all derivatives with the over-all r,-- I of differentiationwithrespect to ~,n, the deriva- 
tives of r and 1 of order n with respect to z and a.are determined using (4.4) and the form- 
ulas obtained by differentiating (4.4) with respect to p and y. Derivatives of remaining 
functions are determined by equations obtained by differentiating (3.1)- (3.3). 

5. Existence of analytic solution of the problem in the supersonic case. 
Convergence of formal power series is proved by costructing majorants of solutions that are 
obtained by solving the auxiliary majorant problem. As a preliminary, the nonlinear equations 
(3.1) in x and :- are reduced to quasi-linear equations in x and y by extending them to deriva- 
tives, and boundary conditions of the problem are reduced to a homogeneous form by substitut- 
ing the unknown functions (subscript unity denotes new notation) >-i I= \- - x0 (I',, y), x1 = s -y 
and the respective substitutions of derivatives of these functions; further 

P, z:= s - f ,, "I = ri - f,, I), 6 - fz, rl r= ,' - g1 (l -. tl)-I, I, zz I_ R1 (1 _ 4-I 

For the transformation of quantities We obtain the homogeneous boundary conditions 

'* =~= 0: y, .G !',fi = ylv == 0, rl - I, = 0 (5.1) 
T =(I: x -- . 1 - “,fi = XQ = Sla = 0, aI=bl=sl=:l,---dr~=O 

Formulas of the form (4.4) also apply to transformed Q' and $'- These formulasandthe 
transformed equations imply that the problem with boundary conditions of form (5.1), wherethe 
equality sign is replaced by the majorizing relation (S1l"O >0, etc. 1 can be taken as the 
majorizing problem. We recall that the relation f>g means that the coefficients of expan- 
sion of function f in series in powers of its arguments are not lower than the absolutevalues 
of respective coefficients of g. 

Equations of the majorizing problem are obtained as follows. Coefficients at derivatives 
in the right-hand sides of transformed equations and in the expressions of transformed func- 
tions q“,@' are replaced by their majorants, with the retention of the property of some co- 
efficients vanishing at point i\i. Functions that satisfy "like" equations are majorized by 
one majorant. 

Let Y be the majorant for all components y,, yip, ylv, X the majorant for components XI1 
r,p, x1?, Z the majorant for components .rzar S the majorant for function Sl, 12 and L the maj- 
orants for rl and I,. and A the majorant for a, and 6,. The majorant system is ofthe form 

Y, = F,P’,, X, = F, (Y, .- ‘PI). Zr = F, (/,, :- RI +- Yl -t ‘vz) (5.2) 

&ST = F, (La ;- IiT -7 ‘P”l -j- Y,), L1, = Fb’k”I, 
ill, = R, - Fe (‘I”, +- ‘9’%) 
L, = Y& -;- Fs (Y1 -I- up,), 5 = 111’ .j- qp -i P - B1 + Y - y17 

YII = Bp j- xv -I- 1, y, z:: (S -;- 5)(x, -i Z,), B = (Y + X -‘- Z -+ S .I- A + R -+ L)z 

where Q and 11~ are constants which will be defined later, and Fi are the majorants of coef- 
ficients of input equations. 

The solution of system (5.2) must vanish at point N. Hence the majorantsof coefficients 
in that point neighborhood can be taken in the form 

Fi = Ki (1 - (r, -;- 5).;lr,)_' 

with appropriately selected constants Ki, nri. Formulas similar to (4.4) can be obtained for 
Eqs.(5.2), from which follows that, if we set in boundary conditions (5.1) d = 1, theobtained 
problem is also a majorant for the input problem. 

We seek a particular solution of Eqs.(5.2) that depends only on E, vanishes at point 
5 _ 0, and such that RzL. By virtue of (5.2) the last requirement provides the following 
relation between ?h and I),: '1, = li,(v, 3_v1) qe. The system of equations for finding the part- 
icular solution X (Q, Z (Q, S (Q, A (E), Y (Q, R (5) z L (E) is of the form 

QY' = P, (22’ -j- I), x,qgX’ = F, (x,n,Y’ -t 28’ + 1) 

x1@ = F, (q&’ -j- x,q,R’ t_ Y,), x1@’ = F, (22’ -t_ 1) 
"l'lis' = F4 (q,L’ -t_ xlqtR’ f Yt,), ~~~11‘ = FeY, 
x* = ‘/,(v, -; Y,), XL1 = I’ o,(va---V,), Y,=(fr,-:-5)r1*(1-tX1)+2)C’+l 
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The substitution of expressions for 'I", I?'. L’ from the first and last of equations into 

the right-hand sides of the remaining ones together with the linear combination of equations 
yield for function Z the equation 

QX' = (F, + X1_'F, (@, _t 1) +- XI-‘Fj)(2z’ + 1) -i 
(XI-’ (F3 + F,)((l + x,)xs-‘FG -:- 1) + 2x2-‘F,)(Y, - 1) 

In the neighborhood of point Z = 5 = 0 this equation can be solved for Z'. For this a 

fairly large parameter nr is selected, namely 

Tb>2(Kl -i- %;'Kz(xlK~ I- I);- X;'K,)i- 

2(x;'(S:, -;. K,) ((1 -;- X,)$IiG + 1) + 2x;‘&) 

The equation for the determination of Z now assumes the form 

Z' = @((r, E) (5.3) 

with function CD of the majorant type (with positive coefficients of expansion in series in 

powers of its arguments in the neighborhood of point Z= E = 0). By the Cauchy-Kovalevsky 
theorem there exists an analytic solution of Eq.(5.3) that is, also, a functionofthemajorant 

type, and Z (0) = 0. Using the known function S we determine functions Y, x, z; s, A, H = L 
which are also of the majorant type. We, thus, obtain the particular solution of the majorant 
system (5.21, which satisfies the conditions 

Ylaa,>0, XI,=,>O, Zlrz,,>O. Sjr=,,>O, A(,=,>O, H =I, 

A successive calculations ofcoefficientsofexpansionofthis solution in power series will 
show that these series majorize the power series constructed in Sect.4. 

6. The one-sheeted mapping of (7, c(, p, y) --f (4 x, Y, 4. The Jacobian of that mappingis 
finite and nonzero at points of yO. This enables us to use locally in the neighborhood of 
every point of v0 the implicit function theorem. For small ~,a (i.e. in the y0 neighborhood) 
the mapping is one-sheeted, hence the equalities 

t (TV, al, PI, y,) = t (Q, cpr Pp, y2), x (L al, B1, yl) = x (rs, or, B?, v2) 
imply the equalities 

z1 = rpr a, = ap, BI = fL 1'1 = Y2 

By the definition of function t we have a,-tr,+t,(fll,yl)= e,+~+t,(p,~,v~). In conformity 
with (3.1) we have for functions s(~,a,p,~) valid the following formula 

(6.1) 

where H and G coincide with the right-hand sides of Eqs.(3.1), and it is possibletosubstitute 
in H function x for y owing to their equality when z = 0. 

Consider the neighborhood of y0 in which IHl<C,, IGI<C,(C, is a positive constant).From 
(6.1) we have the inequality 

I x h a, B> P) - x0 (BP v) I < Cl (7 -’ 4 

Then the following two inequalities are also satisfied: 

I x0 (fL YJ - x, 5%. n) I < Cl @I $- 'x1 f Tp + ad, I to @1, vd --o&L V?) I< % + a1 -I- r2 + a2 

The specified mapping t= to@,?), s=xU(fi,v) is such that from the last inequalitieswehave 

I B1 - 08 I + I Vl - 1’2 I < G (a + a1 + T? + a*) 
with some positive constant C,. By virtue of (6.1) the relation x (Q. al, p,. 11,) = x (Q, al, j&, s2) 
can be written in the form 

from which we obtain the inequality 
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with some constant C,>O. From the obtained inequality we obtain for small ~1, ~2, a,, a% the 
required equalities by virtue of the linear independence of vectors xR - tpG, x,, - f.+C, H - G at 
points of i'o - The one-sheeted property of mapping is proved. In the indicated neighborhood 
of 7:) the mapping can be inverted yielding a solution in the form of analytic functions of x,t. 

The region in which the problem was solved comprises the band 061.. t, with some I" > 0. 
The obtained solution, thus, defines the initial stage of shock wave reflection from the wall. 
An analytic solution of the problem of regular reflection that is uniquely determined in some 
neighborhood of the incident wave trace moving along the wall was obtained for large t under 
the condition of analyticity of function that define the gas flow in the neighborhood of the 
incident wave front. The above reasoning shows that, when the projection on the II plane of 
gas velocity relative to the trace behind the reflected shock wave front becomes subsonic (at 
small t it is higher than the local speed of sound),the conditions of solvability of the 
problem in the class of analytic functions are not satisfied, which implies the appearance of 
solution singularities. In the case of convergence of the derived series and one-to-one map- 
ping (t,cc,fj,X)--(t,z,~,z) the obtained solution defines the total flow of gas behind the reflect- 
ed wave, and not only in the trace neighborhood. The transition from a regular shock wave re- 
flection to the irregular one requires investigation. 

The author thanks L.V. Ovsiannikov for his interest in this paper. 
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